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Entransy—A physical quantity describing heat transfer ability
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Abstract

A new physical quantity, Eh ¼ 1
2
QvhT , has been identified as a basis for optimizing heat transfer processes in terms of the analogy

between heat and electrical conduction. This quantity, which will be referred to as entransy, corresponds to the electric energy stored
in a capacitor. Heat transfer analyses show that the entransy of an object describes its heat transfer ability, as the electrical energy in
a capacitor describes its charge transfer ability. Entransy dissipation occurs during heat transfer processes as a measure of the heat trans-
fer irreversibility. The concepts of entransy and entransy dissipation were used to develop the extremum principle of entransy dissipation
for heat transfer optimization. For a fixed boundary heat flux, the conduction process is optimized when the entransy dissipation is min-
imized, while for a fixed boundary temperature the conduction is optimized when the entransy dissipation is maximized. An equivalent
thermal resistance for multi-dimensional conduction problems is defined based on the entransy dissipation, so that the extremum prin-
ciple of entransy dissipation can be related to the minimum thermal resistance principle to optimize conduction. For examples, the opti-
mum thermal conductivity distribution was obtained based on the extremum principle of entransy dissipation for the volume-to-point
conduction problem. The domain temperature is substantially reduced relative to the uniform conductivity case. Finally, a brief intro-
duction on the application of the extremum principle of entransy dissipation to heat convection is also provided.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Designers are always seeking ways to improve heat
transport techniques in many engineering fields because
they can improve the energy utilization efficiency or reduce
the weight and size of the heat transfer equipment. For
instance, adding high heat conductivity materials to the
basis materials can increase the thermal conduction rate
and increasing the fluid velocity or turbulence intensity
can enhance the convection heat transfer rate. There are
various quantities to describe the heat transfer rate, but
there is no concept of efficiency for transfer processes
because in heat transfer problems the input (for example,
high conductivity materials or fluid velocity) has different
units than the output (increased heat transfer rate or
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doi:10.1016/j.ijheatmasstransfer.2006.11.034

* Corresponding author. Tel.: +86 10 6278 2660; fax: +86 10 6278 3771.
E-mail address: demgzy@tsinghua.edu.cn (Z.-Y. Guo).
reduced temperature difference). As a result, a heat transfer
process can be enhanced, but there is no way to know how
to optimize a heat transfer process.

Heat transfer is an irreversible, non-equilibrium process
from the point of view of thermodynamics. Onsager [1,2]
set up the fundamental equations for non-equilibrium ther-
modynamic processes and derived the principle of the least
dissipation of energy using variational theory. Prigogine [3]
developed the principle of minimum entropy production
based on the idea that the entropy production of a thermal
system at steady-state should be the minimum. The integral
expression for the minimum entropy production principle
can be used to derive the partial differential equations for
heat conduction, mass diffusion, viscous flow, etc. How-
ever, both of these principles do not deal with heat transfer
optimization. Bejan [4,5] developed entropy generation
expressions for heat and fluid flows. He analyzed the least
combined entropy production induced by the heat transfer
and the fluid viscosity as the objective function to optimize

mailto:demgzy@tsinghua.edu.cn


Nomenclature

A surface area
Ce capacitance
Ch heat capacity (thermal capacitance)
cv specific heat at constant volume
cp specific heat at constant pressure
Ee electrical energy
_Ee electrical energy flow
_Ee/ dissipation rate of electrical energy
Eh entransy
_Eh entransy flow
Eh/ entransy dissipation
_Eh/ dissipation rate of entransy
Eve electrical energy in a capacitor
_Eve derivative of Eve with respect to time
Evh entransy stored in an object
_Evh derivative of Evh with respect to time
h convection coefficient
J functional
k thermal conductivity
M mass
Qe electrical charge
_Qe ¼ I electric charge flow (electric current)
Qh heat
_qh heat flux

_Qh heat flow (thermal current)
_qhs heat source intensity
Qve electrical charge in a capacitor
Qvh heat stored in an object (thermal charge)
Re electrical resistance
Rh thermal resistance
t time
T temperature
Ue electrical potential
Uh = T thermal potential (temperature)
V volume

Greek symbols

d thickness, variation
g entransy transfer efficiency
e convergence criteria
eh entransy density
_eh entransy flux
k Lagrange multiplier
q density
l dynamic viscosity
/ mechanical energy dissipation function
/h entransy dissipation function
/e electrical energy dissipation function
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the geometry of heat transfer tubes and to find optimized
parameters for heat exchangers and thermal systems. This
type of investigation is called thermodynamic optimization
because its objective is to minimize the total entropy gener-
ation due to flow and thermal resistance. For the volume-
to-point heat conduction problem, Bejan [6,7] developed
a constructal theory network of conducting paths that
determines the optimal distribution of a fixed amount of
high conductivity material in a given volume such that
the overall volume-to-point resistance is minimized. This
article introduces a new physical quantity, entransy, which
can be used to define the efficiencies of heat transfer pro-
cesses and to optimize heat transfer processes. The
entransy corresponds to the electrical potential energy in
a capacitor, and is an indication of both the nature of
‘‘energy” and the heat transfer ability.
2. Analogy between heat and electrical conduction

Experimental studies often used the electric conduction
analogy to heat conduction to solve complex steady-state
or transient heat conduction problems [8] in the 1950s
because computers were not well developed and thermal
experiments were cumbersome. The two systems are analo-
gous because Fourier’s law for heat conduction is analo-
gous to Ohm’s law for electrical circuits. In the analogy,
the heat flow corresponds to the electrical current, the ther-
mal resistance to the electrical resistance, temperature to
electric voltage, and heat capacity to capacitance. The anal-
ogies between the parameters for the two processes are
listed in Table 1 from which shows that the thermal system
lacks the parameter corresponding to the electrical poten-
tial energy of a capacitor.

An appropriate quantity, Evh, can be defined for an
object that corresponds to the electrical energy in a capac-
itor based on the often used analogy between electrical and
thermal systems. The quantity Evh is defined as:

Evh ¼
1

2
QvhUh ¼

1

2
QvhT ð1Þ

where Qvh ¼ McvT is the thermal energy or the heat stored
in an object with constant volume which may be referred to
as the thermal charge. Uh or T represents the thermal po-
tential. The next section further discusses the physical
meaning of this quantity.
3. Entransy

The physical meaning of entransy can be understood by
considering a reversible heating process of an object with
temperature, T, and specific heat at constant volume, cv.
For a reversible process, the temperature difference
between the object and the heat source and the heat added
are infinitesimal, as shown in Fig. 1. Continuous heating of
the object implies an infinite number of heat sources that
heat the object in turn. The temperature of these heat



Table 1
Analogies between electrical and thermal parameters

Electrical charge stored in capacitor Electrical current (charge flux) Electrical resistance Capacitance
Qve I Re Ce ¼ Qve=U e

[C] C½ �= s½ � ¼ A½ � [X] [F]

Heat stored in a body Heat flow Thermal resistance Heat capacity
Qvh ¼ McvT _Qh Rh Ch ¼ Qvh=T
[J] [J/s] [s K/J] [J/K]

Electrical potential Electrical current density Ohm’s law Electrical potential energy in a capacitor
Ue _qe _qe ¼ �Ke

dU e

dn Ee ¼ 1
2 QeU e

[V] [C/m2 s] [J]

Thermal potential (temperature) Heat flux density Fourier law
?

Uh = T _qh _qh ¼ �Kh
dUh

dn
[K] [J/m2 s]

Qvh

v,T c

hQδ

Fig. 1. Spheric thermal capacitor.
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Fig. 2. Schematic of the charging/discharging process between two
capacitors.
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sources increases infinitesimally with each source giving an
infinitesimal amount of heat to the object. The temperature
represents the potential of the heat because the availability
of the heat differs at different temperatures. Hence the
‘‘potential energy” of the thermal energy increases in paral-
lel with the increasing thermal energy (thermal charge)
when heat is added. When an infinitesimal amount of heat
is added to an object, as with the derivation for the electri-
cal energy in a capacitor, the increment in ‘‘potential
energy” of the thermal energy can be written as the product
of the thermal charge and the thermal potential (tempera-
ture) differential

dEvh ¼ QvhdT ð2aÞ
If absolute zero is taken as the zero temperature potential,
then the ‘‘potential energy” of the thermal energy in the
object at temperature T is

Evh ¼
Z T

0

Qvh dT ð2bÞ

The word potential energy is quoted because its unit is J K,
not joules. For a constant specific heat

Evh ¼
Z T

0

Mcv T dT ¼ 1

2
McvT 2 ð2cÞ

Hence, like an electric capacitor which stores electric charge
and the resulting electric potential energy, an object can be
regarded as a thermal capacitor which stores heat (thermal
charge) and the resulting thermal ‘‘potential energy”.

If the object is put in contact with an infinite number of
heat sinks that have infinitesimally lower temperatures, the
total quantity of ‘‘potential energy” of heat which can be
transferred out is 1

2
QvhT . Hence the ‘‘potential energy” rep-

resents the heat transfer ability of an object. This concept is
called Entransy because it possesses both the nature of
‘‘energy” and the transfer ability. This has also been
referred to as the heat transport potential capacity in an
earlier paper by the authors [9].

The concept of entransy was derived here in terms of the
analogy between electrical conduction and heat conduction
for the heating of an object. Biot [10] introduced a similar
concept in the 1950s in his derivation of the differential con-
duction equation using the variation method. Eckert and
Drake [11] summarized that Biot’s formulation of a varia-
tional equivalent of the thermal conduction equation from
the ideas of irreversible thermodynamics to define a thermal
potential and a variational invariant. The thermal potential
plays a role analogous to the potential energy, while the var-
iational invariant is related to the concept of dissipation
function. However, Biot did not further expand on the phys-
ical meaning of the thermal potential and its application to
heat transfer optimization was not found later except in
approximate solutions to anisotropic conduction problems.

4. Entransy dissipation and balance equation

The concept of entransy dissipation will again be ana-
lyzed by analogy between electric conduction and heat con-
duction. Fig. 2 shows a typical electrical system with two
capacitors and a resistor. The charge and potential on
capacitor 1 before charging are Qve10 and Uve10, while those



Fig. 3. (a) Thermal system before contact and (b) thermal system after
contact.
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on capacitor 2 are Qve20 and Uve20. With Qve representing
the charge on the capacitor, Qe the charge flowing through
the resistor and I the current at any time after the switch
has been closed, the charge conservation equation is:

I ¼ _Qe ¼ _Qve1 ¼
dQve1

dt
¼ _Qve2 ¼

dQve2

dt
ð3Þ

During the discharging/charging process, the decrease in
electric energy in capacitor 1 is equal to the increase in elec-
tric energy in capacitor 2 plus the dissipation of electrical
energy in the resistor. So, electrical energy balance gives

Qve1

dU e1

dt
þ Qve2

dU e2

dt
þ I2R ¼ 0 ð4Þ

Eqs. (3) and (4) can be solved to determine the electrical
system parameters.

Charges on capacitors 1 and 2

Qve1 ¼ B�e1 þ C�e U e10 � U e20ð Þe�t=ReC�e ð5aÞ
Qve2 ¼ B�e2 � C�e U e10 � U e20ð Þe�t=ReC�e ð5bÞ
Current

I ¼ _Qe ¼
dQe

dt
¼ U e10 � U e20

Re

� �
e�t=ReC�e ð5cÞ

Potentials of capacitors 1 and 2

U e1 ¼
B�e1

Ce1

þ C�e
Ce1

U e10 � U e20ð Þe�t=ReC�e ð5dÞ

U e2 ¼
B�e2

Ce2

� C�e
Ce2

U e10 � U e20ð Þe�t=ReC�e ð5eÞ

Electric energy dissipation rate

_Ee/ ¼ I2Re ¼
U e10 � U e20ð Þ2

Re

e�2t=ReC�e ð5fÞ

Rate of electric energy lost by capacitor 1 and received by
capacitor 2

_Ee1 ¼ _Eve1 ¼
U e10 � U e20ð Þ

Re

� B�e1

Ce1

e�t=ReC�e þ C�e
Ce1

U e10 � U e20ð Þe�2t=ReC�e

� �

ð5gÞ

_Ee2 ¼ _Eve2 ¼
U e10 � U e20ð Þ

Re

� B�e2

Ce2

e�t=ReC�e � C�e
Ce2

U e10 � U e20ð Þe�2t=ReC�e

� �

ð5hÞ

where

C�e ¼
Ce1Ce2

Ce1 þ Ce2

; B�1 ¼
Ce1ðQve10 þ Qve20Þ

Ce1 þ Ce2

;

B�2 ¼
Ce2 Qve10 þ Qve20ð Þ

Ce1 þ Ce2

; _Ee1 ¼ U e1I ; _Ee2 ¼ U e2I ;

_Eve1 ¼
dEve1

dt
; _Eve2 ¼

dEve2

dt
:

Eqs. (5b) and (5g) show that the charging time for the
charge on capacitor 2 to increase from Qve20 to Qve2
depends not only on the potential of capacitor 1, but also
on its capacitance, that is, the larger the capacitance of
capacitor 1 the shorter the charging time is. Hence, the
charging time of capacitor 2 will decrease as the electric en-
ergy stored in capacitor 1 increases. This implies that the
electric energy describes the ability to charge other capaci-
tors or the ability to transfer charge.

The ratio of the electric energy received by capacitor 2 to
the electric energy delivered by capacitor 1 can be defined
as the electric energy transfer efficiency

ge ¼
U e2I
U e1I

¼ 1� I2Re

U e1I
¼ 1� IRe

U e1

ð5iÞ

which shows that the electric resistance determines the elec-
tric energy transfer efficiency for given I and Ue1.

Now, consider the thermal system shown in Fig. 3,
which is composed of objects 1 and 2 which have very high
thermal conductivities and thermal capacitances and object
3 which has very low thermal conductivity and thermal
capacitance. Therefore, objects 1 and 2 can be regarded
as thermal capacitor without thermal resistance while
object 3 is a thermal resistor without thermal capacitance.

The thermal charge and potential (temperature) for
thermal capacitors 1 and 2 before they touch are Qvh10,
Qvh20, U h10 ¼ T 10, and U h20 ¼ T 20. Let Qvh represents the
thermal charge in the capacitor, Qh the heat going through
the thermal resistor from initial state to the final state, and
dQh

dt the heat flow through the resistor after the three objects
touch. While energy flows from the high temperature
object 1 to the low temperature object 2, conservation of
thermal energy (or thermal charge) gives

_Qh ¼
dQh

dt
¼ dQvh1

dt
¼ dQvh2

dt
ð6Þ
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Meanwhile there is also an accompanying flow of entransy
from object 1 to object 2 in this thermal system. However,
entransy, unlike the thermal energy, is not conserved dur-
ing the heat transfer process because of entransy dissipa-
tion in the thermal resistor. Hence, the entransy decrease
of thermal capacitor 1 is equal to the entransy increase of
thermal capacitor 2 plus its dissipation in the thermal
resistor

Qvh1

dT1

dt
þ Qvh2

dT 2

dt
þ _Q2

hRh ¼ 0 ð7Þ

where _Q2
hRh is the entransy dissipation rate in a thermal

resistor, which is analogous to the electric energy dissipa-
tion rate in a electric resistor. Eq. (7) is then an entransy
balance equation. The solution of Eqs. (6) and (7) gives
the instantaneous parameters of the thermal system. The
thermal energy stored in object 1 and object 2

Qvh1 ¼ B�h1 þ C�hðT 10 � T 20Þe�t=RhC�
h ð8aÞ

Qvh2 ¼ B�h2 � C�hðT 10 � T 20Þe�t=RhC�
h ð8bÞ

Heat flow

_Qh ¼
dQh

dt
¼ T 10 � T 20

Rh

� �
e�t=RhC�

h ð8cÞ

Temperature (thermal potential) of object 1 and object 2

T 1 ¼
B�h1

Ch1

þ C�h
Ch1

ðT 10 � T 20Þe�t=RhC�
h ð8dÞ

T 2 ¼
B�h2

Ch2

þ C�h
Ch2

ðT 10 � T 20Þe�t=RhC�
h ð8eÞ

Rate of entransy delivered by object 1 and received by
object 2

_Eh1 ¼ _Evh1 ¼
ðT 10 � T 20Þ

Rh

� B�h1

Ch1

e�t=RhC�
h þ C�h

Ch1

ðT 10 � T 20Þe�2t=RhC�
h

� �

ð8fÞ

_Eh2 ¼ _Evh2 ¼
ðT 10 � T 20Þ

Rh

� B�h2

Ch2

e�t=RhC�
h � C�h

Ch2

ðT 10 � T 20Þe�2t=RhC�
h

� �

ð8gÞ

Rate of dissipation of entransy in the thermal resistor (ob-
ject 3)

_Eh/ ¼ _Q2
hRh ð8hÞ

where

C�h ¼
Ch1Ch2

Ch1 þ Ch2

; B�1 ¼
Ch1 Qvh10 þ Qvh20ð Þ

Ch1 þ Ch2

;

B�2 ¼
Ch2ðQvh10 þ Qvh20Þ

Ch1 þ Ch2

; _Eh1 ¼ T 1
_Qh ¼ T 1

dQvh1

dt
;

_Eh2 ¼ T 2
_Qh ¼ T 2

dQvh2

dt
:

Eqs. (8b) and (8f) show that the heating time to change the
thermal charge on object 2 from Qvh20 to Qvh2 depends not
only on the temperature, but also on the heat capacity of
object 1. Hence, the larger entransy stored in object 1 re-
sults in less heating time for object 2. Thus the entransy de-
scribes the ability of an object to transfer heat just as the
electrical energy describes the ability of a capacitor to
transfer charge. Since a certain amount of entransy is dis-
sipated in the thermal resistor, an entransy transfer effi-
ciency can be defined as the ratio of the entransy flow
into object 2 to the entransy flow out of object 1

gh ¼
T 2

_Qh

T 1
_Qh

¼ 1� Rh
_Q2

h

T 1
_Qh

¼ 1� Rh
_Qh

T 1

ð9Þ

A smaller thermal resistance in the thermal system for a
given heat flow, _Qh, results in a higher entransy transfer
rate.

Therefore, as an irreversible process, heat transfer
through a medium is just like fluid flow through a pipe
where mechanical energy is dissipated due to flow friction
or electricity flow through a conductor where electrical
energy is dissipated due to the electrical resistance. Entransy
is also dissipated due to the thermal resistance when heat is
conducted though a medium. The thermal resistance origi-
nates from the entransy dissipation just as the flow resis-
tance originates from mechanical energy dissipation.

Since the internal thermal resistance of an object in gen-
eral is not negligible, an entransy balance equation for a
continuum can also be derived. For heat conduction with-
out a heat source, the thermal energy conservation equa-
tion is

qcv

oT
ot
¼ �r � _q ¼ r � ðkrT Þ ð10aÞ

The entransy balance equation is

Tqcv

oT
ot
¼ �r � ð _qT Þ þ _q � rT ð10bÞ

The left term in Eq. (10b) is the time variation of the en-
transy stored per unit volume. The first term on the right
is the entransy transfer associated with the heat transfer
while the second term on the right is the local rate of
entransy dissipation. The entransy balance equation can
then be rewritten as

devh

dt
¼ �r � _ehð Þ � /h ð10cÞ

where evh is the entransy density, the entransy per unit vol-
ume, and _eh is the entransy flux. The last term on the right
side of Eq. (10c) is the entransy dissipation function

/h ¼ � _q � rT ¼ k rTð Þ2 ð11Þ

where k is the thermal conductivity and $T is the temper-
ature gradient. The physical meaning is the dissipation of
entransy per unit time and per unit volume. The entransy
dissipation function resembles the dissipation function for
mechanical energy in fluid flow.
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Fig. 4. Steady heat conduction.
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Consider one-dimensional steady-state heat conduction
in a plate with thickness d as shown in Fig. 4 where the
input heat flux is equal to the output heat flux,

_qh1 ¼ _qh2 ¼ _qh ð12aÞ

However, the input entransy flux is not equal to the output
entransy flux due to dissipation during the heat transport.
The entransy balance equation is

_qh1T 1 ¼ _qh2T 2 þ
Z d

0

/h dx ð12bÞ

where
Z d

0

/h dx ¼ �
Z d

0

_qh

dT
dx

dx ¼ _qh

Z T 1

T 2

dT ¼ _qhðT 1 � T 2Þ

Eq. (12b) again shows that the input entransy flux is equal
to the sum of the output entransy flux and the dissipated
entransy per unit time and per unit volume. The entransy
transfer efficiency is then

gh ¼
_Eh1 � _Eh/

_Eh1

¼
_Eh2

_Eh1

¼ T 2

T 1

ð13Þ

which is the same as Eq. (9).
Next consider the transient heat conduction in a contin-

uum. Consider two cubic objects with the same volume,
mass, specific heat and thermal conductivity, as shown in
Fig. 5. Their initial uniform temperatures are T1 and T2

with T1 > T2. When the two objects touch heat will flow
from the high temperature object to the lower temperature
1 h1

v

,

, ,

T E

M c k
 2 h2

v

,

, ,

T E

M c k

3

h3

T

E
3

h3

T

E

Fig. 5. Transient heat conduction.
object. The difference between this case and that shown in
Fig. 3 is that the objects in Fig. 5 have distributed thermal
resistances and heat capacities. The internal resistances of
the two objects induce entransy dissipation during the heat
transfer process. The two objects will come to an equilib-
rium temperature, T3, after a sufficiently long time,

T 3 ¼
T 1 þ T 2

2
ð14Þ

Before touching, the entransies in the two objects are

Evh1 ¼
1

2
Qvh1T 1 ¼

1

2
McvT 2

1

Evh2 ¼
1

2
Qvh2T 2 ¼

1

2
McvT 2

2

ð15aÞ

After touching and equilibrium is achieved, the entransy of
each object is

Evh3 ¼
1

2
Qvh3T 3 ¼

1

2
McvT 2

3 ð15bÞ

Comparison of Eqs. (14), (15a) and (15b) shows that the
total entransy of the system decreases after touching. The
entransy balance equation is then

Evh1 þ Evh2 ¼ 2Evh3 þ Eh/ ð16Þ
where

Eh/ ¼
1

4
McvðT 1 � T 2Þ2 ð17Þ

is the dissipated entransy which can also be expressed by
integrating the dissipation function over the volumes

Eh/ ¼
Z 1

0

Z
V 1

kðrT Þ2 dV dt þ
Z 1

0

Z
V 2

kðrT Þ2 dV dt ð18Þ

The entransy transfer efficiency from the initial state to the
equilibrium state is

g ¼ 2Evh3

Evh1 þ Evh2

¼ 2T 2
3

T 2
1 þ T 2

2

¼ ðT 1 þ T 2Þ2

2ðT 2
1 þ T 2

2Þ
ð19Þ

For both the steady-state and transient cases the entransy
transfer efficiency does not depend on the thermal conduc-
tivity as can be seen from Eqs. (13) and (19). However, lar-
ger temperature differences between the two objects result
in more dissipation and lower entransy transfer efficiency.
Less time is needed for two objects with higher thermal
conductivities to reach equilibrium when the entransy dis-
sipation per unit time is larger. Hence, the entransy transfer
efficiency between the two objects is not a function of the
thermal conductivity.

5. Extremum principle of entransy dissipation and the

minimum thermal resistance principle

5.1. Extremum principle of entransy dissipation

The concept of transfer efficiency and heat transfer opti-
mization have not developed because the ‘input’ and ‘out-
put’ for heat transfer processes do not have the same



Z.-Y. Guo et al. / International Journal of Heat and Mass Transfer 50 (2007) 2545–2556 2551
physical parameters. However, the entransy and entransy
dissipation concepts provide a mechanism for the optimiza-
tion of heat transfer processes.

For simplicity consider the optimization of a steady-
state heat conduction problem. Cheng et al. [12,13] started
from the differential form of the conduction equation to
derive a variational statement of the heat conduction using
the method of weighted residuals. They derived a minimum
entransy dissipation principle for prescribed heat flux
boundary conditions and a maximum entransy dissipation
principle for prescribed temperature boundary conditions
that are referred to as the extremum principle of entransy
dissipation.

The least entransy dissipation principle states that for
the prescribed heat flux boundary conditions, the least
entransy dissipation in the domain leads to the minimum
difference between the two boundary temperatures. The
principle can be expressed as

_QhdðDT Þ ¼ d
Z

V

1

2
kðrT Þ2 dV ¼ 0 ð20Þ

where d denotes the variation, DT is the temperature differ-
ence, and _Qh is the heat flow. The maximum entransy
dissipation principle states that the largest entransy
dissipation in a domain with a prescribed temperature dif-
ference as the boundary condition leads to the maximum
heat flux. The principle can be expressed as

DT d _Qh ¼ d
Z

V

1

2
kðrT Þ2 dV ¼ 0 ð21Þ

Unlike the Biot’s variational method, the present method
works directly with the differential equation and boundary
conditions. Furthermore, Biot’s variational principle is a
quasi-variational principle, as Finlayson [14,15] indicated,
which applies only to the approximate solution, not neces-
sarily to the exact solution of heat conduction. He also
showed that the Euler equation developed from the theo-
rem of minimum entropy production reduces to the heat
conduction equation only when kT2 = constant.

5.2. Minimum thermal resistance principle

The thermal resistance is defined as the ratio of the tem-
perature difference to the heat flux. This thermal resistance
definition, as well as the electrical resistance definition, is
only valid for one-dimensional problems. The thermal
resistance for multi-dimensional heat transfer problems is
difficult to define, especially with non-isothermal boundary
conditions. However, an equivalent thermal resistance can
be defined for multi-dimensional problems with complex
boundary conditions based on the concept of entransy
dissipation.

Consider one-dimensional electrical conduction, where
the electrical energy dissipation per unit time is

_Eve/ ¼
Z

V
/e dV ¼ I2Re ¼

ðDUÞ2

Re

ð22aÞ
where DU is the potential difference across the resistance
Re. Thus

Re ¼
_Eve/

I2
¼ ðDUÞ2

_Eve/

ð22bÞ

For a multi-dimensional domain with two iso- or non-iso-
potential boundary conditions, the equivalent electrical
resistance can be defined as

Re ¼
ðDUÞ2

_Eve/

and Re ¼
ðDUÞ2

_Eve/

ð23aÞ

that is, the equivalent resistance is equal to the potential
difference squared divided by the electrical energy dissipa-
tion, where DU is the mean potential difference. For a mul-
ti-dimensional electrical conduction problem with a given
current, I, the resistance can also be expressed as the elec-
trical energy dissipation divided by the current squared

Re ¼
_Eve/

I2
ð23bÞ

As with electrical conduction, the entransy dissipation
per unit time for one-dimensional heat conduction can be
related to the thermal resistance as

_Evh/ ¼
Z

V
/h dV ¼ _Q2

hRh ¼
ðDT Þ2

Rh

ð24aÞ

where

Rh ¼
DTð Þ2
_Evh/

¼
_Evh/

_Q2
h

ð24bÞ

where _Qh is the heat flow at the boundary. For a multi-
dimensional domain with two iso- or non-isothermal
boundary conditions, the equivalent thermal resistance
can be written as

Rh ¼
ðDT Þ2
_Evh/

or Rh ¼
ðDT Þ2
_Evh/

ð25aÞ

where DT is the mean temperature difference. The equiva-
lent thermal resistance is the ratio of the temperature
difference squared over the entransy dissipation. For
multi-dimensional heat conduction problems with specified
heat flux boundary condition, the equivalent thermal resis-
tance can be expressed as

Rh ¼
_Evh/

_Q2
h

ð25bÞ

The physics behind the entransy dissipation extremum
principle can be understood from the relation between
the entransy dissipation and the equivalent thermal resis-
tance. According to Eq. (25b), the minimum entransy dis-
sipation results in the minimum equivalent thermal
resistance when the heat flux is prescribed. The maximum
entransy dissipation corresponds to the minimum equiva-
lent thermal resistance for prescribed boundary tempera-
ture according to Eq. (25a). Thus these two principles
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can be combined into the minimum thermal resistance
principle which states that for heat conduction problems
with specified constraints (for instance, a limited amount
of high conducting material in the substrate) the heat con-
duction is maximized or the heat conduction is optimized
(maximum heat flux for a given temperature difference or
the minimum temperature difference for a given heat flux)
if the equivalent thermal resistance for the domain is
minimized.

Therefore, optimization of a heat conduction process
minimizes the equivalent thermal resistance for the con-
straints. The minimum entransy dissipation implies the
minimum thermal resistance for a given boundary heat
flux, while the maximum entransy dissipation implies the
minimum thermal resistance for a given set of boundary
temperatures.
5.3. Application of the entransy dissipation extremum

principle (minimum thermal resistance principle)

5.3.1. Application to heat conduction

The volume-to-point conduction problem seeks to effec-
tively remove heat generated in a volume to a point on its
surface. High conductivity material is embedded in the sub-
strate to improve the thermal conduction. The problem is
to optimize the allocation of a limited amount of high con-
ductivity material so that the generated heat can be most
effectively transported to the point to minimize the temper-
ature rise in the domain. Bejan [6,7] developed the con-
structal theory network of conducting paths to optimize
the high conductivity material allocation so as to minimize
the thermal resistance from the ‘volume’ to the ‘point’. The
material allocation in the volume-to-point conduction
problem can also be optimized using the entransy dissipa-
tion concept.

Consider a square domain (two-dimensional) with a uni-
form heat source _qhs ¼ 100 W=m3, as shown in Fig. 6.
The boundary has a constant temperature section at
T ¼ 300 K. The heat generated in the domain is conducted
to this small section with the other boundaries adiabatic.
The local conductivity in the domain may vary continu-
ously but the volume-averaged thermal conductivity is kept
Fig. 6. Volume-to-point conduction problem.
constant at �k ¼ 1 W=m K. The objective is to optimize the
conductivity distribution to minimize the domain tempera-
ture. The optimization objective is then the conductivity
distribution in the domain that minimizes the entransy dis-
sipation (gives the lowest average temperature of the
domain). The constraint is that the volume-averaged con-
ductivity is constant, i.e.,

R
V k dV ¼ const ¼ �k � V . This is

a typical functional extremum problem.
The constraint is removed by using the Lagrange multi-

pliers method to construct a functional,

J ¼
Z

V

1

2
kðrT Þ2 þ kk

� �
dV ð26Þ

where k is a Lagrange multiplier, which is a constant. By
making the variation of the functional, J, with respect to
the thermal conductivity, k, equal to zero, then

ðrT Þ2 ¼ 2k ð27Þ
This equation demonstrates that the temperature gradient
in the domain should be uniform to minimize the entransy
dissipation. Using Fourier’s law, Eq. (27) can also be writ-
ten that the ratio of the local heat flux to the local thermal
conductivity should be uniform over the domain to mini-
mize the entransy dissipation.

The numerical procedure for finding the optimum distri-
bution of high conductivity material that satisfies Eq. (27)
is as follows:

(1) initially fill the domain with a uniformly distributed
conductivity,

(2) solve the differential conduction equation to obtain
the temperature field and heat flux field,

(3) calculate the new thermal conductivity distribution
using the following equation:
knþ1ðx; y; zÞ ¼
_qnðx; y; zÞj j
_qnðx; y; zÞj j

� knðx; y; zÞ ð28Þ

where _q is the heat flux, n the iteration step,
j _qnðx; y; zÞ j ¼ 1

V

R
V j _qnðx; y; zÞ j dV , and knðx; y; zÞ ¼

1
V

R
V knðx; y; zÞdV ¼ 1 W=m k,
(4) return to step (2) to recalculate the temperature and
heat flux fields again until the following converging
criterion is satisfied at each location,
ðknþ1ðx; y; zÞ � knðx; y; zÞÞ=knþ1ðx; y; zÞ < e ð29Þ
where e is a positive value that is much less than one.
The numerically optimized thermal conductivity distri-
bution is illustrated in Fig. 7. The constant temperature
boundary section has two peaks that correspond to the
heat flux peaks at each end. The peak value of the thermal
conductivity is almost 200 times the average value, while in
most of the domain the thermal conductivity is very small,
only several percent of the average thermal conductivity.
The temperature field before optimization (uniform ther-
mal conductivity) is shown in Fig. 8, where the average
temperature is 390.2 K, the highest temperature at the
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Fig. 10. Thermal conductivity distribution after optimization for
W = 2 cm.

Fig. 7. Thermal conductivity distribution after optimization for
W = 10 cm.

Fig. 8. Temperature distribution with uniform thermal conductivity
distribution for W = 10 cm.

Fig. 9. Temperature distribution after optimization for W = 10 cm.
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upper corner is 407.6 K, and the equivalent thermal resis-
tance Rh ¼ _Evh/= _Q2

h ¼ 0:9 K=W. The temperature gradients
are more uniform after optimization, as shown in Fig. 9,
where the average temperature is reduced from 390.2 K
to 337.8 K and the highest temperature is reduced
from 407.6 K to 372.2 K. The thermal resistance Rh ¼
_Evh/= _Q2

h ¼ 0:38 K=W, which shows that the thermal resis-
tance is reduced by more than half. When the isothermal
section width is reduced from W = 10 cm to 2 cm there is
only one thermal conductivity peak at the patch, as shown
in Fig. 10, with a thermal conductivity of about twice that
of the case with W = 10 cm. The equivalent thermal resis-
tance is increased correspondingly.

For the case when a finite amount of highly conductive
material is embedded in the substrate, the numerical proce-
dure for finding the optimum allocation of high thermal
conductivity material that approximately satisfies Eq. (23)
is as follows:

(1) The finite amount of high thermal conductivity mate-
rial is divided into N portions
N ¼ n/ ð30Þ

where / is the substrate porosity and n is the number
of elements in the numerical model.

(2) Initially fill the domain with the low thermal conduc-
tivity substrate material.

(3) Solve the differential conduction equation to obtain
the temperature field and heat flux field.



Table 2
Heat transfer results for the optimization of a finite amount of high
thermal conductivity material in a uniform heat source material

Mesh size Rh (K/W) Temperature decrease

20 � 20 0.0437 642.8
40 � 40 0.0179 668.7
60 � 60 0.0178 668.8

Fig. 12. Second order assembly construct using Bejan’s constructal
theory. Temperature decrease: 667.6 K.
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(4) The original substrate material is replaced by a por-
tion of the high thermal conductivity material where
such replacements maximize the entransy dissipation
reduction.

(5) Return to step (3) to recalculate the temperature and
heat flux field again and to step (4) to replace addi-
tional substrate material by another portion of the
high thermal conductivity material, until all N por-
tions of the high thermal conductivity material are
embedded in the substrate.

Consider the volume-to-point conduction problem with
a uniform heat source _qhs ¼ 1000 W=m3, the substrate
material thermal conductivity, k0, being 1 W/m K and the
thermal conductivity of the additional material, kP, being
400 W/m K, for the geometry shown in Fig. 6. The average
temperature in the domain is 986 K while the highest tem-
perature is 1127.3 K when the high thermal conductivity
material is uniformly distributed. Simulations with three
different mesh sizes were conducted to identify the mesh
size effect. The calculated high conductivity materials dis-
tribution are illustrated in Fig. 11. The results for the ther-
mal resistance Rh and the average temperature decrease are
given in Table 2. The average temperature decrease for the
finest mesh is 668.8 K, while the equivalent thermal resis-
tance is Rh ¼ 0:0178 K=W. Note that the differences in
the average temperature decrease and the thermal resis-
tance from the medium mesh to the finest mesh are very
small. For comparison, the optimized results (second order
assembly construct) using Bejan’s constructal theory net-
work of conducting paths are illustrated in Fig. 12. The
a

c

b

Fig. 11. (a) Construct using the minimum thermal resistance principle
(number of elements: 20 � 20). Temperature decrease: 642.8 K. (b)
Construct using the minimum thermal resistance principle (number of
elements: 40 � 40). Temperature decrease: 668.7 K. (c) Construct for the
finest mesh using the minimum thermal resistance principle (number of
elements: 60 � 60). Temperature decrease: 668.8 K.
average temperature decrease is 667.8 K and the equivalent
thermal resistance Rh ¼ 0:0189 K=W. Therefore, the aver-
age temperature decrease using the minimum thermal resis-
tance principle based on the entransy dissipation concept
for the finest mesh is slightly better than that predicted
by using Bejan’s secondary order assembly construct.
5.3.2. Application to heat convection
The extremum principle of entransy dissipation can also

be applied to the optimization of heat convection pro-
cesses. Consider heat convection in a straight tube with
prescribed wall temperature and inlet fluid temperature.
The objective is to find the optimal velocity distribution
of the fluid in the tube for a fixed mass flow rate and flow
resistance as constraints.

Meng et al. [16,17] used the maximum entransy dissipa-
tion principle to establish the following Lagrange function
using variation calculus:

J ¼
Z

V

1

2
kðrT Þ2þC0/þA1 kr2T �qcpU �rT

� �
þC1r�U

� 	
dV

ð31Þ

where / is the viscous dissipation function and C0, A1, C1

are Lagrange multipliers. C0 is required to be constant,
while A1 and C1 are functions of U, T and position. The
variation of J with respect to the temperature T yields

kr2A1 þ qcpU � rA1 � kr2T ¼ 0 ð32Þ

andZ
C

krT � krA1 þ qcpUA1

� �
 �
dT þ A1drT

� 

d~S ¼ 0 ð33Þ
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The variation of J with respect to the velocity U gives

2C0lr2U þ qcpUrA1 þrC1 ¼ 0 ð34Þ

andZ
C
ð2C0P þ C1ÞdU � d~S ¼ 0 ð35Þ

where l is the dynamic viscosity and P is the pressure. Eqs.
(32)–(35) can be combined to give

lr2U � qU � rU �rP þ ðC/A1rT þ qU � rUÞ ¼ 0

ð36Þ

where C/ is a constant related to the given flow resistance
(the given viscous dissipation). This is Euler’s equation,
which the fluid velocity field should satisfy to maximize
the heat transfer and the resulting entransy dissipation in
Fig. 13. Optimum flow field for laminar heat transfer in a circular tube
(Re = 400).

5%Um

Fig. 14. Transverse flow velocities in the discrete double-inclined ribs
tube.
the tube flow. This equation was originally referred to as
the field synergy equation with the entransy referred to as
the heat transfer potential capacity [16].

Meng et al. [16] solved Eq. (36) numerically for fluid
flow in a straight 20 mm diameter circular tube for fully
developed laminar flow, a uniform wall temperature of
310 K and an average inlet fluid temperature is 300 K. A
typical numerical result (at Re = 400 and C/ ¼ �0:01Þ
for the flow field is plotted in Fig. 13, where multiple lon-
gitudinal vortexes appear in the cross section of the circular
tube. The Nusselt number is 313% higher than for fully
developed laminar heat transfer in a circular tube. This
implies that the heat convection in a tube can be optimized
by generating multiple longitudinal vortices in the flow.
Meng et al. [16,17] then developed a discrete double-
inclined ribs tube and an alternating elliptical axis tube to
produce the multiple longitudinal vortex flow. The numer-
ically predicted flow field in the discrete double-inclined
ribs tube is illustrated in Fig. 14, which is close to the
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Fig. 15. Experimental and numerical results for the heat transfer and flow
resistance in the discrete double-inclined ribs tube.
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theoretically optimum flow field shown in Fig. 13. Both
numerical and experimental results show that the enhanced
tube has much better heat transfer performance than the
smooth tube as shown in Fig. 15. Flow through an
alternating elliptical axis tube also generates a multiple lon-
gitudinal vortex flow pattern, as shown in Fig. 14, which
had dramatically enhanced heat transfer, as shown in
Fig. 16.
6. Concluding remarks

(1) A new physical quantity, entransy, is introduced
based on the analogy between heat conduction and
electric conduction that can be used to optimize heat
transfer processes. Without the concept of entransy
heat transfer processes cannot be easily optimized.
An analysis of the heat transfer from an object shows
that the entransy, which corresponds to the electric
potential energy in a capacitor, possesses the nature
of ‘‘energy”. Objects can then be described as thermal
capacitors, which simultaneously store heat and
‘‘thermal potential energy”.

(2) The entransy of an object is a measure of its ability to
transfer heat to other object, just as the electrical
energy of a capacitor is a measure of its ability to
transfer charge. Heat transfer is always accompanied
by entransy transfer. However, while thermal energy
is conserved, entransy is not conserved due to dissipa-
tion. The entransy dissipation concept can then be
used to define an efficiency for heat transfer processes
and to optimize heat transfer processes.

(3) The extremum principle of entransy dissipation,
which is equivalent to the minimum thermal resis-
tance principle for heat conduction optimization, is
derived using the method of weighted residuals.

(4) The entransy dissipation extremum principle or the
minimum thermal resistance principle is applied to
optimize the volume-to-point access thermal conduc-
tion problem. With a fixed volume-averaged conduc-
tivity as the constraint, the optimized thermal
conductivity distribution is obtained that greatly
reduces the equivalent thermal resistance and the
average temperature.
(5) The entransy dissipation extremum principle is also
applied to optimize heat convection of tube flow.
With the mass flow rate and flow resistance as con-
straints, the optimum flow field in the tube is
obtained which markedly maximize the heat transfer
rate in the tube for a given temperature boundary
condition.
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